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Symmetry of Density Functions Based on the n-tuple Phase Angle 
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With respect to O(i), the Fourier transform of the function F~mF-~ ", m > n >_ O, (a) possesses the identical 
lattice and (b) possesses in its factor group identical rotations but translations multiplied by (m-n);  
in particular, the symmetry of the density function based on 2~0 is given by the original elements with 
factor-group translations doubled. For the special case m= n > 0, as required, the density function has 
the appropriate Laue symmetry. 

Introduction 

Several phase-determining formulae based on phase- 
angle multiples have been published (Hauptman, 1970; 
Tsai & Collins, 1972). In the latter paper special 
emphasis was placed on the double phase angle, 2~0, 
and its role as a basis for unifying respective ap- 
proaches to centrosymmetric and noncentrosymmetric 
phase problems. 

There is, however, no reason to limit exploration of 
this concept to the field of direct methods or, more 
generally, to operations in reciprocal space. In centro- 
symmetric phase problems there is a correspondence 
between direct methods utilizing EZ(=lE[ z) and 
Patterson-map analysis in direct space. This corre- 
spondence can be extended to span all symmetries by 
considering in direct space not P(0,  the transform of 
[FI 2, but Q(O, the transform of F 2 [= IF[ 2 exp (i2~0)]. 
Of course P(O and Q(0 are identical for centrosymme- 
tric structures, and for noncentrosymmetric structures, 
Q(0 cannot be composed in the absence of phase 
information. But the point is not moot, because in 
some noncentrosymmetric space groups 2~0 can be 
estimated in a straightforward calculation via the T22 
formula of Tsai & Collins (1972). 

In the high-resolution limit, positions of the maxima 
in Q(0 correspond to sums of atomic position vectors 
(Ramachandran & Srinivasan, 1970); this is evident 
from the equivalence of Q(0 and the self-convolution 
of the electron density, Q(0- However, understanding 
and utilization of Q(0 require knowledge of its symme- 
try as well. This we have derived and in such a way 
that the well-known symmetry of the Patterson func- 
tion follows naturally. The result is readily generalized 
to the symmetry of the Fourier transform of F~mF_h n, 
where m, n are integers and m > 0, m > n _> 0. 

Notation 

In the main the notation is Zachariasen's (1967),* 
except that operators are used as prefactors. For con- 

* Vectors are printed in italic type with a bar above the cha- 
racter: dyadics are orinted in bold type. 

venience some of Zachariasen's formulations are 
restated with a few minor changes. 
S is a symmetry operation such that equivalent points 

and ~' are related as 

~'=s.~=[~,,f].~=q,.~+f; s_-- [q~, f]. 

The identity element is E-- [I, 0] =- I, where I is the 
idemfactor. 
The inverse of S exists and is given by 

S-1=[~o-1, _q)-i.  /r]. 

A transformation first by $1 then by Sz is represented by 

s 2 .  sx = [q,2. ~1, ( ~ .  il) + t,] = [q,~. ~ ,  q,2. ~, + ~2]. 

A space group, (G), may be represented as the direct 
product of the invariant subgroup of lattice transla- 
tions, (F), and its factor group, (G/F). 
The translation group (F) has elements FL = [I, A-,]; 
A-L is one of the lattice translations. 
The factor group has the form (G/F)= (E= $1,$2,...). 
An expression of the type { . . . }  represents a set 
corresponding to all possible values for the subscripts 
within the braces. 
We define s(me")=[%(mOn)f], where the symbol 
@ represents addition or subtraction. 

Symmetry of combined sets 

Let ~ represent a fundamental set of points, that is, ~ is 
a collection of vectors, {~j}, possessing only trivial 
symmetry. Let (G) represent a space group, the collec- 
tion of operations which generates the periodic array 
(G). ~. Clearly (G). ~ is a set of symmetry-related 
fundamental sets, since (G). ~={G~. ~}, where G~ is 
an element of (G). The problem at hand is to determine 
the symmetry of the set 

{G,, .~@G~2.~ }, (3.1) 

where @ may represent either addition in corre- 
spondence with Q(0, or subtraction in correspondence 
with P(0- 

Since any element of (G) may be written as a product 
of the form I "  L . S i - = [ q l ~ , [ i q - A - z ]  , it is easily verified 
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that (3.1) is equivalent to 

{S,,.  ~@S,z. ~ + A,., ~AL~}. (3.2) 

The set {ALa @~/~,} is contained within {.4~} by closure 
of F under @. Furthermore, that {~fL} is contained 
within {~fra@A'L~} is clear, if we let A'rz be the null 
vector. The sets {~f~.} and {/fL~@A'L~} coincide in 
consequence of which (3.2) becomes 

{[I,A'L]. (S, , .  eff3S,2, e)} (3.3) 
o r  

(V) . {S,~ . e@S,= . e}. (3.4) 

Evidently the translation group of (G) is preserved in 
the symmetry of (3.1). 

Inasmuch as the collection of symmetry elements, 
{S~}, forms a group, the inverse of any element exists 
and is a member of the collection. Thus we may write 
(3.4) as 

( r )  . { S , ,  . S q  ~ . S,  1 . ~ S , ,  . st , ' .  s,~. e}. (3.5) 
With no loss of generality, (3.5) may be written 

(F) .  {S,x. E .  g@S,, .  S,=. #}. (3.6) 

If S~ is expanded and terms are appropriately collected, 
(3.6) becomes 

(F) .  ~,sc°*x)~l . (E • ~@S~2 • 0} , (3.7) 
or 

(F) .  ( S < ~ ) ) .  {E. ~@S,. i}, (3.8) 

since in (3.7) SU*l )=[9 , ( l@l) f ]  and the collection 
{S~ 1~1)} forms a group (see Appendix A). 

If (3.1) has a symmetry element, T - [Z ,  fi], in addi- 
tion to those of (F) .  (SC~*~)), then 

{T. (E.  e@S,.  e)}= (E .  e@Sj.  e}. (3.9) 

Expansion of (3.9) gives 

{ Z . ~ . Z .  q J , . e @ Z ,  f , + f t } = { e @ ~ j . e @ f j } .  (3.10) 

One solution to (3.9) or (3.10) is the trivial result 
T = E .  Otherwise @Z=9~-~=gj  implying S j = S 7  ~ 
(see Appendix B), and consequently ~=(1 @l)fj. If 
® represents addition, T is one of {S~ ~+x)} = ( S  <2)) and 
the full symmetry of (3.1) is given by (F) .  (S<2)). If 
@ represents subtraction, T is one of { ] .  S[ ~-~)} and 
the full symmetry of (3.1) is represented by 
( F ) .  (1) .  (St°)). Of course if (S  <°)) already contains the 
inversion group, (1), (F ) .  ( i ) .  (S<°))=(F).  (S<°)). 

By a straightforward generalization, the set 

{ G l ~  • r +  . . . + G i m  . r - G i m + ~  . r -  . . .  - G ~ , , , + ,  . ~} 

(3.11) 
has symmetry given by 

(G~m-"))=(F). (Sire-")), r e > n > 0 ,  (3.12) 

or 
( G ° " - " ) ) = ( F ) .  (1). (S~°)), r e = n > 0 .  (3.13) 

Conclusion 

We can summarize our results for any particular 
crystallographic problem as follows. With respect to 
the symmetry of the Fourier transform of F~, the con- 
volution whose coefficients are given by FfimF_~ n, 
m > n > O ,  (a) possesses the identical lattice and (b) 
possesses in its factor group identical rotations but 
translations multiplied by ( m - n ) .  In the special case 
m = n > O  the well known result is obtained, namely, 
that in addition to (a) and (b), an inversion must be 
added to the factor group if it was not already present. 

Our original interest centered on finding the symme- 
try of the density function obtained from F~2; it can 
be found by doubling the original factor-group transla- 
tions.* When one is able to obtain values of 2~0 for a 
number of reflections, it is possible then to compute 
and interpret the density function, Q(~), based on 
F~2.t A natural use for this function, analogous to the 
Patterson function in every way except that positions 
of maxima are given by position-vector sums (Rama- 
chandran & Srinivasan, 1970) is to provide verifica- 
tion and additional information for the usual de- 
convolution of interatomic vectors. 

APPENDIX A 

Given the group 

{S~l+°)}=-{S~l+°),S<zX+°),... } - ( S ) ,  (A-l) 

the set 

{S~"*"'} - { S', "~"' ,  S~m*"', . . . } - (S  'm~",) (a-2) 

is also a group simply isomorphic with (S). 

APPENDIX B 

Given the factor group 

( S ) = ( S , , . . . ,  S,,) (B-l) 

wherein ~a~ =~j .  It follows that ft = [j, for if this were 
not the case, then 

S i . S T I = [ ( D i  . ( D T I , ( D i .  ( - ( 1 ) 7 1  . [ j )  -}- [i] = [I ,  - [ j  Jl- [i] , 

(B-2) 

a pure translation contrary to hypothesis. 

* The origin for the operators obtained by this procedure 
may differ from that used in International Tables for X-ray 
Crystallography (Henry & Lonsdale, 1952). Consider, for 
example, space group (No. 92) P4t2x2. Alteration of its tabu- 
lated symmetry operators by doubling the translations yields 
the elements of space group (No. 93) P4_,22, but with respect to 
an origin at (0,0,¼) referred to the standard origin. 

t Clearly, if 2¢ is known only for a magnitude-limited set of 
coefficients, say IEI> 1.5, the appropriate density function 
would be the sharpened map based on E ~, rather than that 
based on F z. 



D. M. C O L L I N S  AND P. M. S K A R S T A D  407 

References 

HAUPTMAN, H. (1970). Acta Cryst. B26, 531. 
HENRY, N. F. M. & LONSDALE, K., Eds. (1952). Interna- 

tional Tables for X-ray Crystallography. Vol. I. Symmetry 
Groups. Birmingham: Kynoch Press. 

RAMACHANDRAN, G. N. & SRINIVASAN, R. (1970). Fourier 
Methods in Crystallography. Chap. 2. New York: Wiley- 
Interscience. 

TSAI, C.-C. & COLLINS, D. M. (1972). Acta Cryst. B28, 
1601-1607. 

ZACHARIASEN, W. H. (1967). Theory of X-ray Diffraction 
in Crystals. New York: Dover. 

Acta Cryst. (1975). A31, 407 

The Molecular Replacement Method. I. The Rotation Function Problem, Application to 
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A method to predict all peaks of the rotation function corresponding to a given molecular crystal is 
formulated in a rigorous mathematical manner. The applicability of this method is shown both in the 
analysis of rotation function data and in testing the validity of model molecular crystals proposed on 
the basis of limited rotation function data. Possible models of crystalline bovine liver catalase are 
determined assuming that all peaks of the rotation function are contained in the set of peaks deter- 
mined by Eventoff and Gurskaya. All peaks of the rotation function corresponding to a model of crys- 
talline satellite tobacco necrosis virus (STNV) proposed by Klug and Akervall et aL are determined 
and tabulated. Experimental determination of all these peaks would be a final test of the validity of 
this generally accepted model of crystalline STNV. 

1. Introduction 

In this paper the word molecule will refer to any 
biological macromolecule which is made up of identical 
subunits. In particular, we will be considering protein 
molecules with the property of being made up of iden- 
tically folded polypeptide chains, and such aggregates 
of protein molecules as constitute the polyhedral shell 
of small viruses. The crystalline form of such molecules 
will be called a molecular crystal. 

To determine the structure of such molecules from 
X-ray diffraction data of a molecular crystal, the 
'molecular replacement method'  has been developed 
(Rossmann, 1972). This method consists of three parts: 

(1) The rotation problem: determining the orienta- 
tion of the molecules in a molecular crystal and the 
relative orientation of the subunits of each molecule. 

(2) The translation problem: determining the trans- 
lation vectors between molecules in a molecular crystal. 

(3) The phase problem: Using the results of the first 
two steps in determining the phases of the structure 
factors of the X-ray diffraction data, and subsequently 
in determining the structure of the molecules of a 
molecular crystal. 

We will limit our discussion in this paper to the first 
of these three problems, i.e. to the rotation problem, 
to determining the orientation of the molecules in a 
molecular crystal, and of more importance to deter- 
mining the relative orientation of a molecule's con- 

stituent subunits. The method which is used in 
solving the rotation problem is based on the use of the 
rotation function defined by Rossmann & Blow (1962). 
Peaks of this function have been shown to correspond 
to rotations which leave a molecule invariant or rotate 
a molecule into the orientation of some other molecule 
of the molecular crystal. A collection of reprints on 
the molecular replacement method and in particular 
on the rotation problem, including the paper by Ross- 
mann & Blow (1962), can be found in the book titled 
The Molecular Replacement Method (Rossmann, 
1972). 

The computational time of the rotation function is 
quite considerable, and information on all peaks of the 
rotation function is not always available for the 
analysis of the structure of a molecular crystal. Be- 
cause no method to predict all peaks of the rotation 
function corresponding to a given molecular crystal 
has been formulated (Rossmann, 1973), no method has 
been available for use in a systematic analysis of rota- 
tion function data, nor to verify the validity of molec- 
ular crystal structures proposed on the basis of limited 
rotation function data. Consequently, rotation func- 
tion data has been misinterpreted (Akervall et al., 
1971a). 

It is the purpose of this paper to formulate in a 
rigorous mathematical manner a method to predict 
all peaks of the rotation function corresponding to a 
given molecular crystal. The applicability of this 


